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LETTER TO THE EDITOR 

Berry’s phase as the asymptotic limit of an exact evolution: an 
example 
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t Physics Department, Bose Institute, 93/1 Acharya P C Road, Calcutta 700 009, India 
$ Saha Institute of Nuclear Physics, 92 Acharya P C Road, Calcutta 700 009, India 

Received 17 August 1987 

Abstract. We exhibit, for arbitrary time variations of the parameters of the generalised 
harmonic oscillator Hamiltonian, a canonical transformation which facilitates an exact 
analysis of quantal phase and classical angle. Formulae for Berry’s phase and Hannay’s 
angle are readily obtained by taking the adiabatic limit of the exact theory. 

According to the quantal adiabatic theorem [ 1,2] a bound system with a non-degenerate 
spectrum evolves by clinging to the eigenstates of its instantaneous Hamiltonian when 
the parameters describing the system are changed sufficiently slowly. Consequently, 
the overall phase of the wavefunction changes by an amount proportional to the time 
integral of the instantaneous parameter-dependent energy. An important modification 
of this theorem discovered by Berry [3] is that, for circuital adiabatic excursions in 
parameter space, the wavefunction of the system picks up an additional non-integrable 
phase [3,4] which depends on the geometry of the circuit and, of course, on the 
eigenstate under consideration. This apparently innocuous phase has far-reaching 
consequences and its inclusion promises a better understanding of some of the outstand- 
ing enigmas of quantum physics. Berry’s phase has found application in molecular 
dynamics in the Born-Oppenheimer approximation [5-71 and has recently been used 
by Ham [8] to elucidate the order of the lowest vibronic states in the dynamic 
Jahn-Teller effect for defects in crystals. The physics of the quantum Hall effect [9- 111 
is another area in which the phase turns up, as it does in the case of the quantum field 
theory for Hamiltonians that develop anomalies [ 12-15]. A recent experiment by 
Tomita and Chiao [ 16-18] provides a direct confirmation of the existence of this phase, 
as does the early optical experiment of Pancharatnam [ 191. 

Berry’s phase has a, perhaps less well known, classical counterpart: Hannay’s angle 
[20, 211. An integrable system evolves, according to the classical adiabatic theorem 
[22], by clinging to its instantaneous invariant tori when transported slowly in parameter 
space. Hannay [20] found that, under closed adiabatic cycling, the system suffers an 
extra shift in the angle variable in addition to that dictated by the theorem. This extra 
angle change depends on the geometry of the parameter space circuit and on the 
conserved tori actions. A semiclassical connection [21] that has been shown to exist 
between this angle and Berry’s phase asserts, inter alia, that a classical system exhibiting 
Hannay’s angle must feature Berry’s phase at the quantal level. 

To date, formulae for the Berry phase and the Hannay angles have been derived 
for a number of systems. We are concerned here with one such system: the so-called 
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generalised harmonic oscillator (GHO).  It is our purpose to demonstrate that an exact 
analysis, valid for any time variation of the parameters, can be carried out for this 
simple yet physically important example. Working with this particular example it is 
not necessary to invoke the adiabatic technique of averaging over fast frequencies as 
was done, for example, in Berry’s derivation [21] of the general formula for Hannay’s 
angles. In fact, the Berry phase and Hannay angle will be found to be contained 
within our more general and exact analysis, which can also be used to calculate 
corrections to the adiabatic results for the GHO. 

Turning to technical matters, we construct a time-dependent canonical trans- 
formation whereby the standard form of the GHO Hamiltonian is taken into one which 
is a function of the new canonical momentum only. In this new frame the time evolution 
can be solved in terms of the exact time-dependent frequencies of the system. The 
analysis then enables us to extract the geometric phase and its corresponding angle 
by taking the limit of infinitely slow parameter variations. The new canonical trans- 
formation is a generalisation of that discovered by Lewis [23] and used by him to 
construct an exact invariant of the motion for the ordinary harmonic oscillator with 
a time-dependent frequency. Lewis, in turn, used the general theory of Kruskal [24]. 

Consider, then, the GHO Hamiltonian 
H = f[Zp2 + 2 Yqp + Xq’] (1) 

where {X( t), Y (  t ) ,  Z ( t ) }  = R, are the time-dependent parameters. The instantaneous 
H has a frequency w = (XZ - Y2)”‘ (Lewis worked with the case {X = X(t),  Y = 0, 
Z = constant}). The GHO has the exact invariant 

where an overdot indicates time differentiation and where the auxiliary variable r (  t )  
is any solution of 

2 (1) - r{ - d Y  (-) +-+-- Y 2 Z  x 
d t  Z dt  Z Z r4 (3)  

That i = 0 is easily established by using Hamilton’s equations together with equation 
(3) for r ( t ) .  

The proposed canonical transformation is achieved by choosing I as the new 
momentum coordinate ( P )  whose conjugate (0) is given by 

Q = -tan-’ [: ( p  +?) -$] , (4) 

The F2(q, P, t)-type generator [ 2 5 ]  for the transformation satisfies the pair of differential 
equations 

which upon integration yield 

For the new Hamiltonian we find the simple form 
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Thus K is cyclic in Q and we have obtained an exact transformation to action-angle 
type variables. 

The time evolution of the angle variable is governed by the new time-dependent 
frequencies 

w ' = Z / r 2  (7) 

so that the change in angle, in the time T required for the parameter values to describe 
a complete cycle, is given by 

O( T )  = loT d r z  

which is the exact formula promised. Of course, this expression arises from the 
dynamics. However, if we proceed to take the adiabatic limit, obtained by substituting 
into equation (8) the adiabatic solution to equation (3) ,  we find that 

e ( T ) =  d tw( t ) - i  dS.[VR(Z/w)xV,(Y/Z)].  ( 9 )  I: ss 
The integral over the surface spanning the contour, now adiabatically traversed in 

parameter space, is the Hannay angle arising dynamically from the new frequency U ' ,  

with its intrinsic geometric nature made manifest. 
To obtain Berry's phase, we notice that the action variable I( = P )  can be thrown 

into a quadratic Hermitian form by introducing creation and annihilation operators: 

The operators satisfy [ a ( t ) ,  a + ( t ) ]  = 1. This implies that the Hamiltonian K has the 
time-dependent equispaced eigenvalue spectrum 

hZ  
E , = - ( n + i ) .  

r2 

The total quantal phase, as obtained by integrating over the instantaneous new frequen- 
cies, is obviously 

which as before reduces, in the adiabatic limit, to 

The second term in (12) is the familiar geometric circuit phase. 
Formulae (8) and (11) show how, for any time variation of the parameters, the 

quantum phase and classical angle can be exactly determined. In (0, P)-space the 
instantaneous eigenstates or the tori are clung to-for arbitrary time variations of the 
parameters-and total phase or angle changes are obtained by integrating the instan- 
taneous frequencies w' over the time elapsed. Despite this generality, however, 
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extremely interesting results are obtained when the parameter variations are restricted 
to be simultaneously adiabatic and cyclic, since only in this limit do the results 
manifestly depend on the geometry of the circuit via the flux of the curl of the parameter 
space vector field [ ( Z / w ) V , (  Y / Z ) ]  through any surface bounded by the circuit. 

Finally, we briefly mention two interesting directions in which the present analysis 
can be extended. The first is to other exactly integrable time-dependent systems. Then, 
in principle one could choose, through a canonical transformation, the invariants as 
new action variables (Arnold’s theorem) [ 2 2 ] .  An example that comes to mind is the 
time-dependent cubic oscillator for which Leach [ 2 6 ]  has constructed an invariant. 
Secondly, one could extend our analysis of the GHO and calculate corrections to the 
adiabatic limit. Berry [ 2 7 ]  has recently looked at this question for general Hamiltonians 
in the quantal case. He has given a nice iterative prescription for calculating the 
corrections. It would be very interesting to compare the results obtained from these 
two quite distinct-looking procedures. 

It is a pleasure to thank Professors Michael Berry and Binayak Dutta-Roy for 
encouragement and stimulating discussions. We also thank Professor Berry for showing 
us his recent unpublished work on corrections to the Berry phase. 

References 

[ l ]  Messiah A 1962 Quantum Mechanics vol 2 (Amsterdam: North-Holland) 
[2] Kat0 T 1950 J.  Phys. Soc. Japan 5 435 
[3] Berry M V 1984 Proc. R. Soc. A 392 45 
[4] Simon B 1983 Phys. Rev. Lett. 51 2167 
[ 5 ]  Mead C A and Truhlar D G 1984 J. Chem. Phys. 70 2284 
[6] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111 
[7] Moody J,  Shapere A and Wilczek F 1986 Phys. Rev. Lett. 56 893 
[8] Ham F S 1987 Phys. Rev. Lett. 58 725 
[9] Arovas D, Shrieffer J R and Wilczek F 1986 Phys. Rev. Left. 56 893 

[ lo]  Thouless D, Kohmoto M, Nightingale M and den Nijs M 1982 Phys. Reo. Left. 49 405 
[ l l ]  Semenoff G W and Sodano P 1986 Phys. Rev. Left. 57 1195 
[12] Nelson P and Alvarez-Gaume L 1985 Commun. Mafh. Phys. 99 103 
[13] Niemi A and Semenoff G W 1985 Phys. Rev. Lett. 55 927 
[14] Sonoda H 1986 Nucl. Phys. B 266 410 
[15]  Gozzi E and Thacker W D 1987 Phys. Rev. D 35 2395 
[16] Chiao R Y and Wu Y S 1986 Phys. Rev. Lerf. 57 933 
[17] Tomita A and Chiao R Y 1986 Phys. Rev. Left. 57 937 
[18] Delacretaz G et al 1986 Phys. Rev. Letf. 56 2598 
[19] Pancharatnam S 1956 Proc. Ind. Acad. Sci. A 44 247; 1957 h o c .  Ind. Acad. Sci. A 46 1 
[20] Hannay J B 1985 J.  Phys. A :  Math. Gen. 18 221 
[21] Berry M V 1985 1. Phys. A: Math. Gen. 18 15 
[22] Arnold V I 1978 Mathemarical Methods of Classical Mechanics (Berlin: Springer) 
[23] Lewis H R J r  1967 Phys. Rev. L e f t  18 510; 1968 Phys. Rev. 172 1313; 1968 J. Math. Phys. 9 1976 
[24] Kruskal M 1962 1. Math. Phys. 3 806 
[25] Goldstein H 1980 Classical Mechanics (Reading, MA: Addison-Wesley) 
[26] Leach P G L 1981 1. Mafh.  Phys. 22 465  
[27] Berry M V 1987 in press 


